

Innovative Analytics for Traditional, Social, and Text Data

Dr. Gerald Fahner, Senior Director Analytic Science, FICO

Hot Trends in Predictive Analytics

Big Data – the Fuel

"is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making."

Gartner

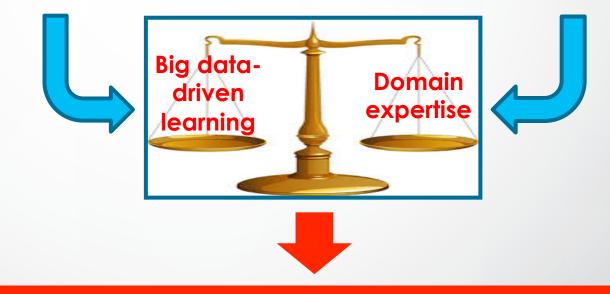
Machine Learning - the Engine

"is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model from example inputs and using that to make predictions or decisions, rather than following strictly static program instructions. Machine learning is closely related to and often overlaps with computational statistics; a discipline that also specializes in prediction-making."

Wikipedia

Domain Expert – the Driver Balance Number Crunching With Expertise

Big Data and Machine Learning can help you to Predict consumer behavior more accurately To unlock this value requires domain expertise to build **Comprehensible models for** justifiable decisions



Deeper Insights - Stronger Predictions – Better Decisions

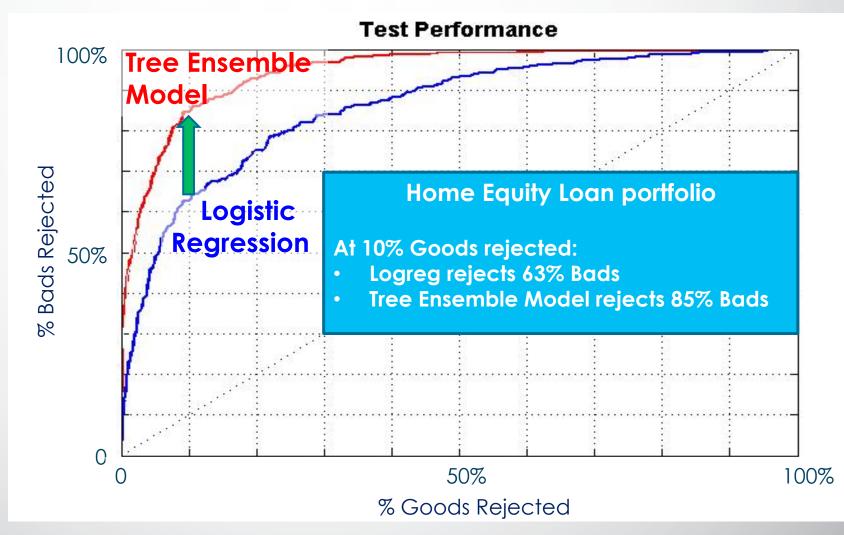
Case Studies

Informing Origination Risk Score Development by Machine Learning

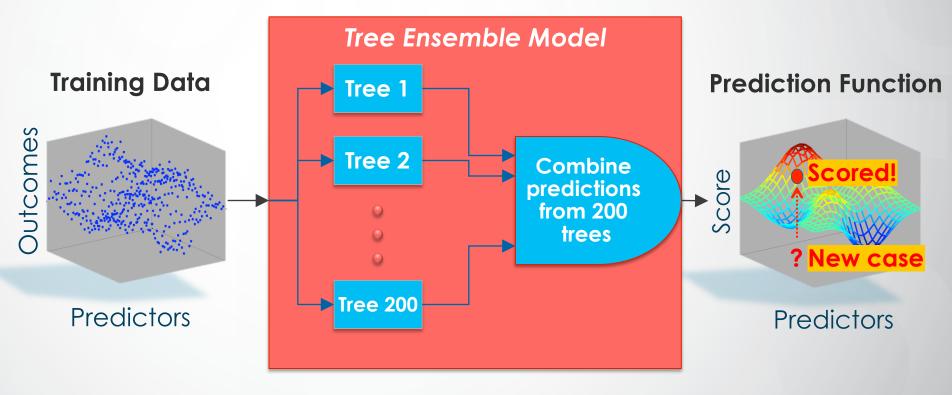
Improving Insurance Fraud Model With Social Network Variables

Evaluating Predictive Power of Text Data for a Peer Lending Network

Machine Learning Models Can Beat Simple Models by Substantial Margins



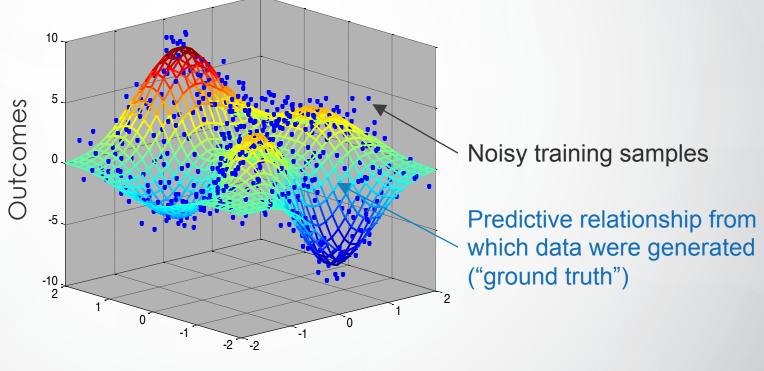
Anatomy of a Tree Ensemble Model



Random Forest

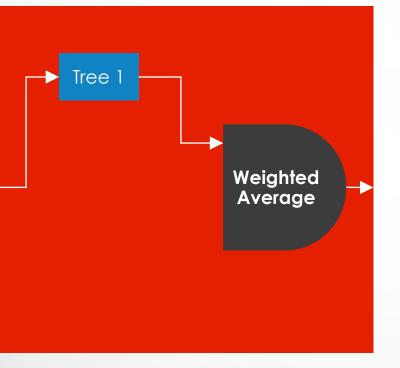
Gradient Boosting

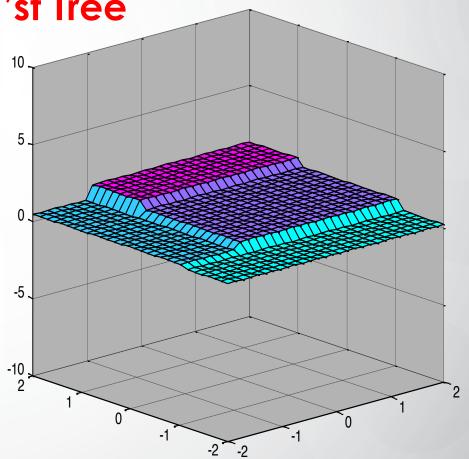
Demonstration Problem



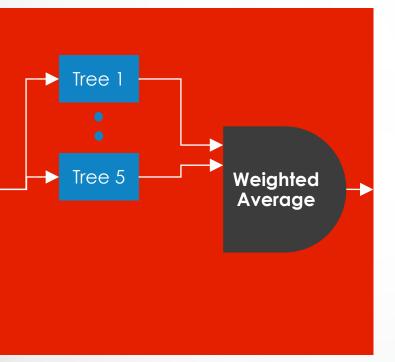
Predictors

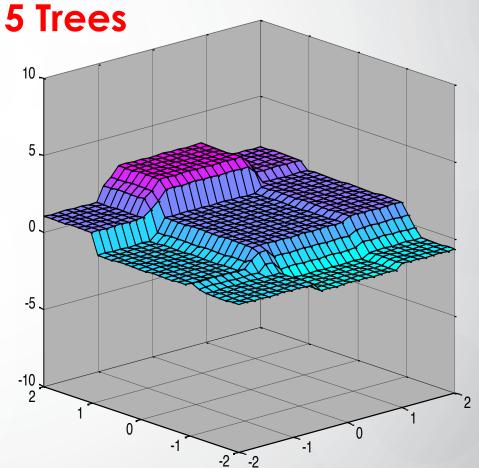
Stochastic Gradient Boosting 1'st Tree



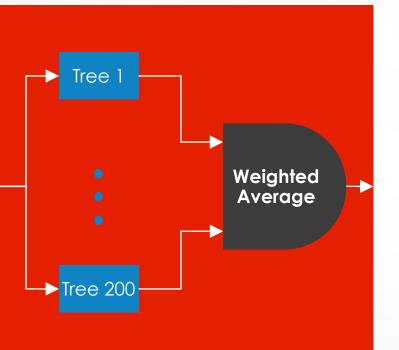


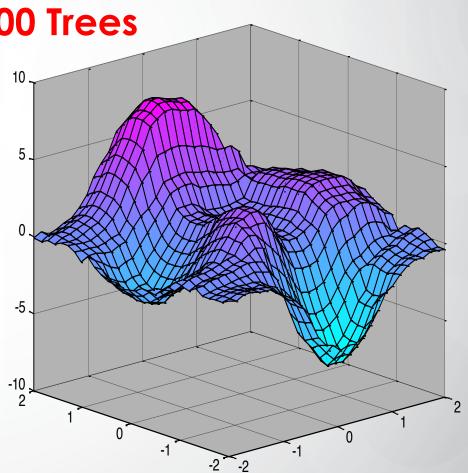
Stochastic Gradient Boosting 5 Trees



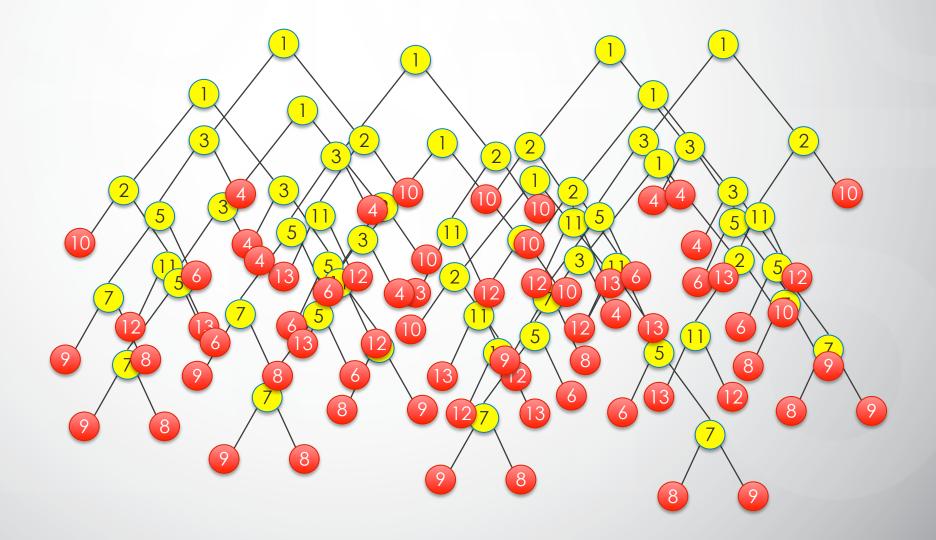


Stochastic Gradient Boosting 200 Trees





Direct Inspection Yields a Black Box



Useful Diagnostic Information

Variable Importance

Relative to most important variable

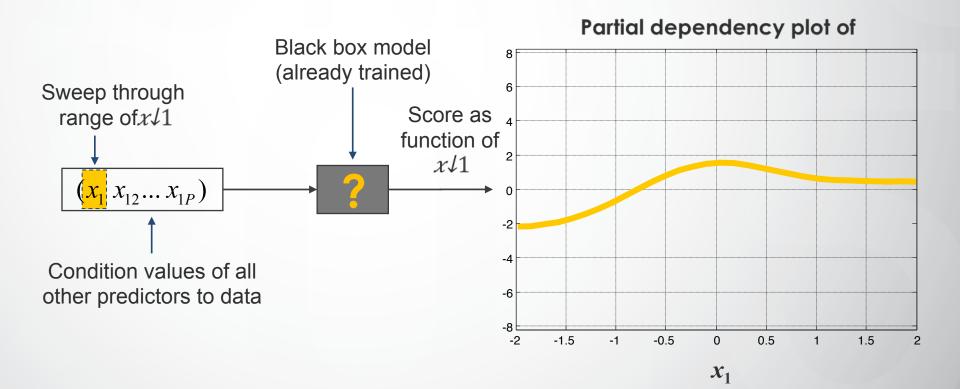
DEBTINC	1.00
DELINQ	0.49
VALUE	0.45
CLAGE	0.40
DEROG	0.34
LOAN	0.25
CLNO	0.24
MORTDUE	0.23
NINQ	0.23
JOB	0.20
YOJ	0.20
REASON	0.07

Interaction Test Statistics

Whether a variable interacts with other variables

DEBTINC	0.029
VALUE	0.022
CLNO	0.014
CLAGE	0.013
DELINQ	0.010
YOJ	0.008
MORTDUE	0.007
LOAN	0.007
DEROG	0.006
JOB	0.006

Input/Output Simulation Create Deeps Insight Into Black Box



Practical Pitfalls Hindering Deployment of Machine Learning Models

Non-intuitive Associations Can Lead to Unjustifiable Credit Decisions

Association ... (after controlling for all else)

Loan Application: Consumers with 10% debt ratio have lower risk score than consumers with 30% debt ratio

Mortgage Lending: Consumers without previous mortgage have lower risk score than consumers with previous mortgage

... Could lead to decision

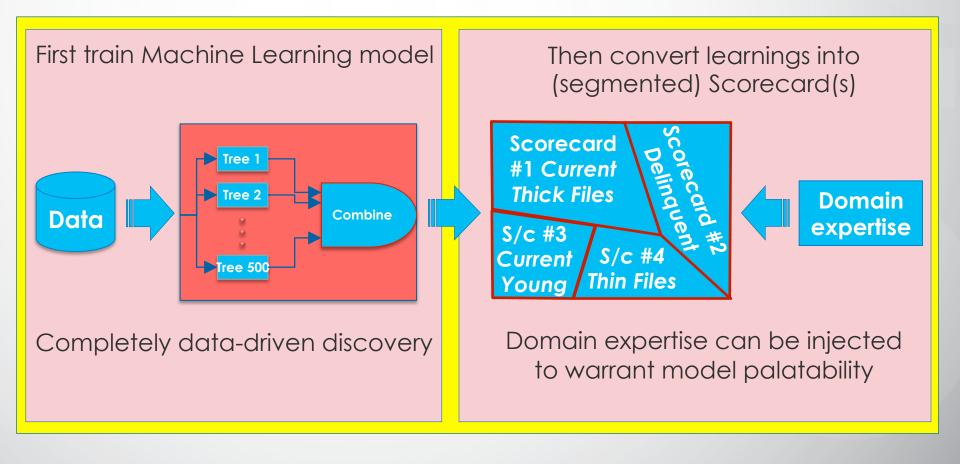
Applicant is rejected because her debt ratio is *not high enough(!?)*

Applicant can't get a mortgage because he doesn't have a mortgage(!?)

Pros and Cons of Machine Learning Models for Credit Scoring

PROS	CONS
Highly accurate fit to data	Vulnerable to data limitations
Discovery of unexpected associations	May capture non-intuitive associations
Automated, productive analysis	Hard to impose domain expertise

"Scorecardizer" Approach: Converts Machine Learnings into Powerful Comprehensible Scorecards



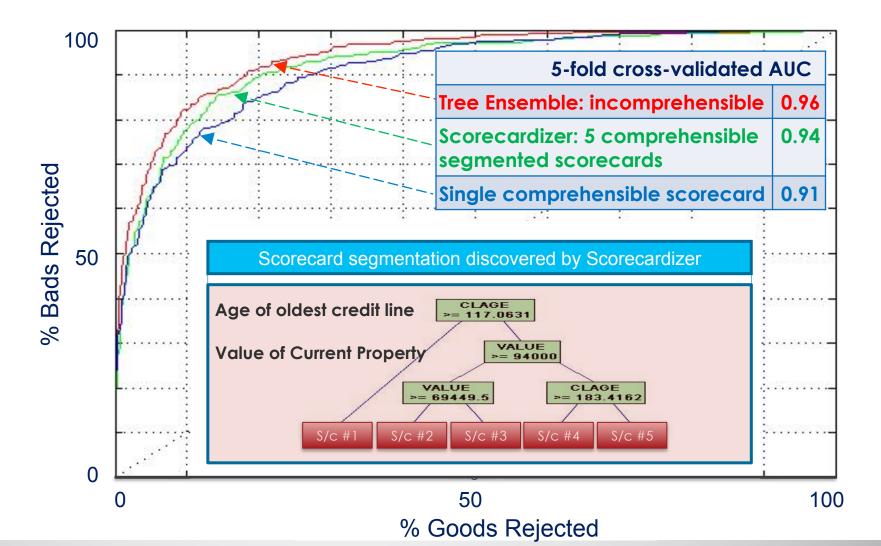
Can We Automate Expertise?

- In well-defined domains (e.g. credit scoring), can codify expertise
- Scorecardizer hooks into a database of expert rules, which enables fully automatic construction of palatable models
 - Manual refinement of the "end product" by domain experts is still possible before deployment

Some examples of codified expertise

- Everything else equal:
 - Score must not increase with higher Debt Ratio
 - Score must not decrease with Applicant Age above 60 years
 - For current accounts, a history of delinquency is bad
 - For 2-cycle delinquents, history of mild delinquency can be good (these have shown their capacity to recover)

Results for Home Equity Loan Portfolio



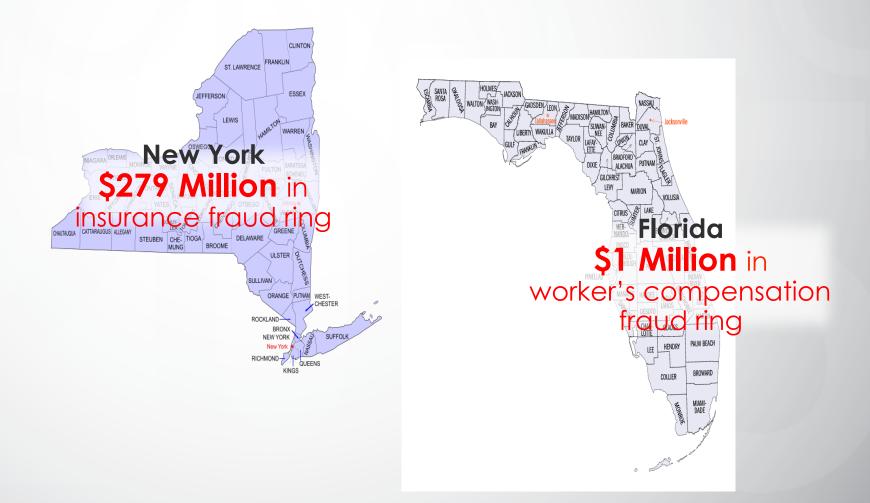
Case Studies

Informing Origination Risk Score Development by Machine Learning

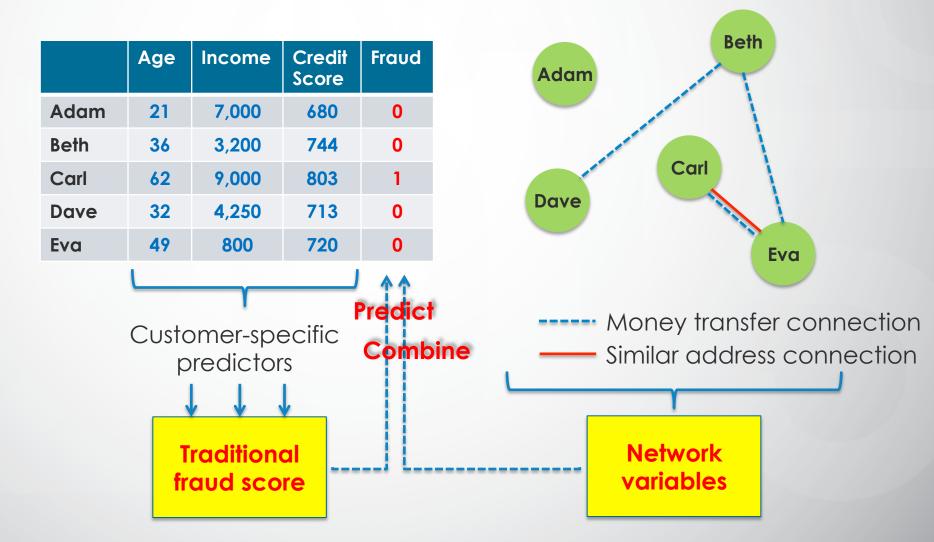
Improving Insurance Fraud Model With Social Network Variables

Evaluating Predictive Power of Text Data for a Peer Lending Network

Insurance Fraud and Networks



Predicting Fraud with Traditional and Network Data



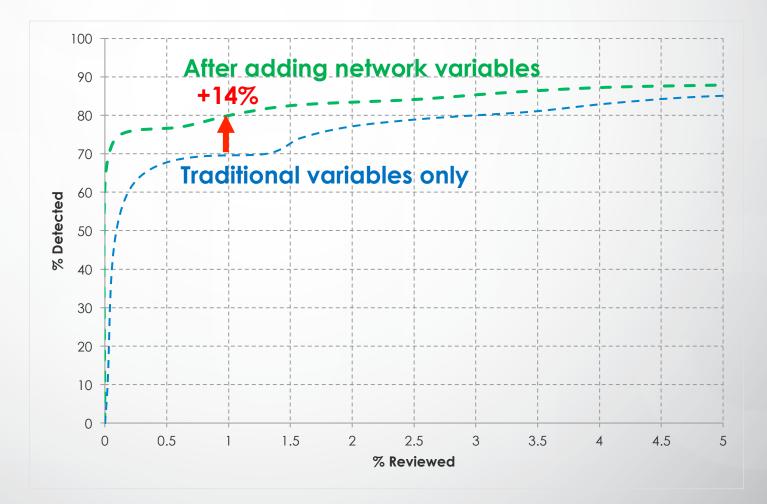
Enhancing Data with Network Variables

	Age	Income	Credit Score	Avg. Age of Connections	# Money Transfers in Network per Month	Fraud
Adam	21	7,000	680	23	2	0
Beth	36	3,200	744	45	3	0
Carl	62	9,000	803	21	7	1
Dave	32	4,250	713	37	3	0
Eva	49	800	720	55	4	0

Variables derived from network

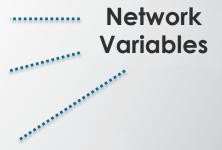
- Graph algorithms
- Feature generation
- Feature evaluation
- Feature selection

Boosting Auto Insurance Fraud Detection with Network Information



Variable Importance Top 10 Variables

Rank	Variable Name
1	Car Model
2	Total Paid Amount in Network
3	Policy Holder Occupation
4	Pre-accident Vehicle Value
5	Total # Payments in Network
6	# Phantom Vehicles in Network
7	ZIP Code of Policy Holder
8	Size of Network
9	Repairable Flag
10	Type of Accident



Tanananananananananan

Case Studies

Informing Origination Risk Score Development by Machine Learning

Improving Insurance Fraud Model With Social Network Variables

Evaluating Predictive Power of Text Data for a Peer Lending Network

Ubiquitous Text Data Can Be Predictive and Yield New Insights

Call center records, claims, public records, collector notes, emails, blogs, social data, freeform comments, reviews, webpages, product descriptions, transcribed phone calls, news articles...

Is there predictive value? How can we leverage it for comprehensible models and justifiable decisions?

> Semantic Scorecards & Topic Analysis

Origination Risk for Peer-to-Peer Lending Network

51.5

19.4

41.1 36.6

75.8 74.1

Structured origination information

Associated Loan Descriptions

1	B C	D	E	F	G	н	1	J		к	L	M	N	0	P		Q.	R
					Earliest_CREDIT_Li				ngu									
2	0 E2	14.28999996	1	0	10/27/2003 0:00		660-678	OWN			debt_cons		11	0		7	0	4175
3	0 A2	3.720000029	0	0	11/19/1988 0:00		780+	MORTGAGE			other	16666.67	0	0		7	0	85607
4	0 A4	2.299999952	0	0	10/28/1998 0:00		714-749	MORTGAGE			debt_cons	8333.33	0	0		1	0	9698
5	0 C1	6.40000095	1	0	12/30/1986 0:00		679-713	RENT		1	credit_car	1500	5	0		6	0	8847
6	0 A4	11.32999992	0	0	11/11/1990 0:00		750-779	MORTGAGE		0	home_im	9166.67	0	0		.3	0	7274
7	0 B1	15.55000019	0	0	5/24/1994 0:00	5 years	750-779	MORTGAGE		0	credit_car	6250	0	0	1	0	0	66033
8	0 A2	0.31000002	0	0	10/5/1997 0:00	1 year	780+	OWN		0	credit_car	7083.33	0	0		7	0	216
9	0 C4	1.21000038	0	0	7/12/1996 0:00	<1 year	660-678	OWN		3	credit_car	6666.67	0	44	1	5	1	27185
LO	0 B5	8.029999733	0	0	8/17/1995 0:00	4 years	679-713	MORTGAGE		1	debt_cons	4000	0	0		6	0	28329
11	0 B3	11.93000031	0	0	2/19/1995 0:00	2 years	714-749	MORTGAGE		1	home_im	15000	0	0	1	6	0	60568
12	0 A4	5.550000191	0	0	6/13/1996 0:00	<1 year	714-749	MORTGAGE		0	home_im	15000	0	0	1	2	9	40934
13	0 A2	2.289999962	0	0	10/6/1997 0:00	8 years	750-779	MORTGAGE		0	debt_cons	10000	0	0		8	0	8379
14	0 B1	14.53999996	0	0	9/21/2000 0:00	<1 year	750-779	MORTGAGE		1	small_bus	2083.33	0	0	_	0	0	3660
15	0 C1	0	1	0	2/11/1997 0:00	2 years	679-713	MORTGAGE		0	home_im	16666.67	19	_		5	0	C
16	0 C4	18.63999939	0	0	4/5/1993 0:00	1 year	679-713	OWN		0	credit_car	2500	0	o	1	0	0	15840
17	0 A5	14.36999989	0	0	2/9/1992 0:00	7 years	780+	MORTGAGE		0	credit_car	6166.67	0	0	1	.5	0	6844
18	0 A3	3	0	0	3/29/1989 0:00	<1 year	750-779	RENT		0	education	666.67	0	0		4	0	1321
19	0 A5	14.77999973	0	0	6/27/1995 0:00	4 years	750-779	RENT		0	vacation	2666.67	0	0	1	1	0	4737
20	0 B2	9.96000038	0	0	1/7/1999 0:00	1 year	714-749	RENT		0	credit car	6083.33	0	0	2	1	0	23485
21	0 C1	10.69999981	0	0	9/17/2003 0:00	<1 year	679-713	RENT		0	small_bus	2281.33	- 0	0		4	0	3534
22	0 C2	4.050000191	0	0	1/7/2000 0:00	2 years	750-779	RENT		0	small_bus	4000	0	0		5	0	2422
23	0 A2	3.829999924	0	0	7/21/2000 0:00	7 years	750-779	MORTGAGE		0	vacation	7916.67	0	0		8	0	3660
24	0 A2	0	0	0	12/25/1987 0:00	8 years	750-779	MORTGAGE		0	home_im	12500	0	0		2	0	605.
25	0 B5	16.44000053	0	0	12/26/2002 0:00	<1 year	679-713	RENT		1	education	1125	0	0	1	0		2864
26	0 B2	10	2	0	4/1/2003 0:00	1 year	714-749	MORTGAGE		0	other	20833.33	5	-9.92+07	-		0	14354
27	0 F4	12.56999969	0	0	8/24/2003 0:00	1 year		RENT		1	debt cons	4350	0	-	1	2	0	3075
28	0 C2	17,12000084	1	0	2/25/1969 0:00		714-749	RENT		2	small bus	5000		0	1	0	0	17214
29	0 C5	2.039999962	0	0	5/25/2004 0:00	<1 year	660-678	RENT		2	credit car	1666.67	24	0		3	0	1153
30	0 E1	10.14999962	0	0	1/1/1996 0:00		679-713	MORTGAGE			credit car		-9.9E+07	-9.9E+07	1	7	0	41674
1	● D3 ● M lendingClu	5 bScored4.5-indx	2	0	4/7/1995 0.00		679-713	OWN			credit car	6250	78	0	14	9	0	43039

Hi, thanks for considering my request. I'm a student in Southern California. I have a great credit score. I will use this loan to pay my rent, books and tuition expenses. I've, secured a part

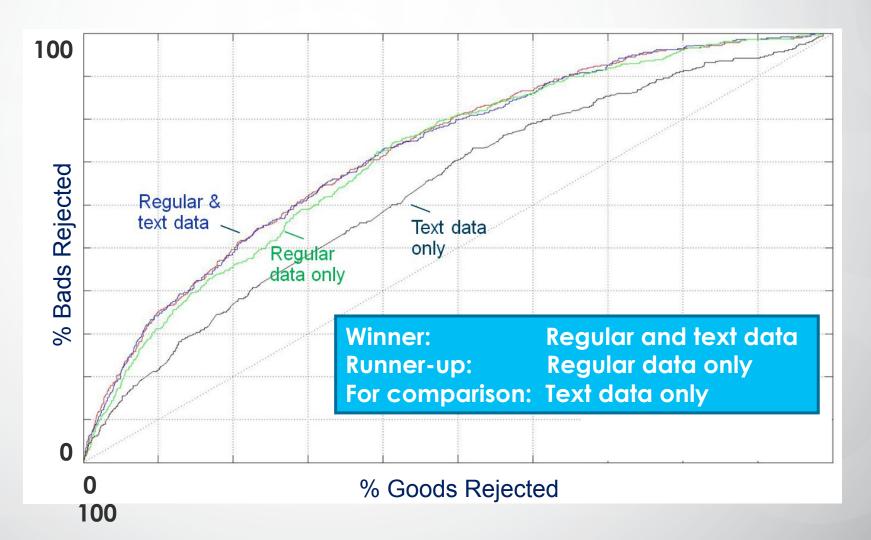
Prospect ID #5340164: "I need this loan to pay off higher rate credit card debt - fixed rate at 15%, that's the only card I use"

Generate traditional variables

Extract keywords and topics

"Semantic Scorecard": Combine traditional variables and text-based features in a comprehensible model

Predictive Value of Text Data



Top Predictors From Automatic Variable Selection

Rank	Variable Name
1	Credit Bureau Grade
2	Inquiries During Last 6 Months
3	Monthly Income
4	Months Since Last Record
5	need /
6	Revolving Credit Balance
7	baby
8	Loan Purpose
9	business
10	would
11	Revolving Line Utilization
12	qualify
13	Length of Employment
14	sincerely
15	credit

Lead to Unjustifiable Decisions

Traditional variables (black) Keywords indicating elevated risk (red) Keywords indicating reduced risk (green)

Rank	Variable Name
16	provided
17	sales
18	job
19	open
20	stable
21	payday
22	card
23	www
24	Open Credit Lines
25	Total Credit Lines
26	shop

Gained New Insights Into Risk Topics Results Using "Latent Dirichlet Allocation"

Reduced risk topic: "Credit card consolidation"

debt, free, consolidating, consolidated, card, credit, revolving, paying, payoff, sooner, quicker, clear, accumulated, accrued, completely, ...

Elevated risk topic: "Business-related items"

business, equipment, sales, capital, store, marketing, experience, location, expand, owner, retail, advertising, partner, inventory, products, profit, shop, restaurant, ...

Discussion

- Machine learning, text- and social network analytics can yield deeper insights and stronger predictions, by combining traditional and novel data sources.
- Yet to make more profitable and justifiable decisions requires careful results interpretation and robust, explainable models.
- Domain expertise, combined with special methods and tools supporting interpretation, are of utmost importance for harnessing the potential of big data and machine learning.